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Directed fixed energy sandpile model
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We numerically study the directed version of the fixed energy sandpile. On a closed square lattice, the
dynamical evolution of a fixed density of sand grains is studied. The activity of the system shows a continuous
phase transition around a critical density. While the deterministic version has the set of nontrivial exponents,
the stochastic model is characterized by mean field like exponents.
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Spontaneous emergence of long ranged spatio-temporhlis so large that*:A>1 then{p(A,L)) is independent of
correlations under a self-organizing dynamics, in absence df and depends solely ok as{p(A,L))~ A?. Naturally 3 is
a fine tuning parameter is the basic idea of self-organizethe order parameter exponent for the transition. On the other
criticality (SOQ. Sandpile models are the prototype modelshand whenx<1, G(x)— constant, independent of both
of SOC[1-9. In sandpile models an integer height variableand L implies that right at the critical poing=¢. the order
h; representing the number of grains in the sand column iparameter varies with the system size §s(L))~L 7"z,
associated with every site of a regular lattice. The system ithdependent ofA.
driven by adding unit grains of sand at a time. When the To which universality class the FES model exponents
height h;>h the sand column topples and it loses someshould correspond to? Intensive research has been done to
grains which are distributed among the neighboring git¢s  study the universality class of the phase transitions in FES
This creates an avalanche of sand column topplings and theodels. It has been suggested that FES belongs to the uni-
extent of such activity measures the size of the avalancheersality class of the linear interface modél$M ) but not of
Sand grains go out of the system through a boundary so thaéat of the Directed percolatioiDP) universality class
in the steady state the fluxes of inflow and outflow current§10-13. DP is generic for continuous absorbing state transi-
balance. tions in the absence of a conservation law where as in FES
On the other hand a fixed energy sandpf&S [10-13  there exists a conserved field which is the density and it
is a sandpile model within a closed system. Therefore theouples the order parameter, i.e., the mean activity. We, in
total mass of sand in this system is a conserved quantity. Thiae present study like to examine if an explicit application of
control parameter is the densifyof grains. A stable state has the directional bias to the FES system makes the system
heights varying from O td.—1 and is called annactive  behave as DP or it results to another new universality class.
state, whereas, any height configuration that has at least one Application of a global directional bias onto a system has
unstable site is said to be in thetivestate. The dynamics of been proved to have strong effect on the critical behaviors of
the system starts with a random distribution MEZL?  various models in statistical physics. In directed systems,
grains. Initially some sites may be unstable, which toppledegrees of freedom of the individual elements is reduced,
Consequently some of the neighboring sites may topplevhich shrinks the configuration space of the system com-
again and the activity continues. For an infinitely large sys-pared to undirected system. As a result a directed system is
tem there exists a critical threshodd such that if{ <{. the  simpler and easily tractable analytically. Examples include
activity terminates and the system gets absorbed in an inagtirected percolatiori14], directed sandpile modgll5-17,
tive state where as faf> . the activity of the system fluc- directed river networks[18], and directed self-avoiding
tuates but maintains a steady mean vdll@. Thereforel, walks [19], etc.
is the critical point of a continuous phase transition from an  We study here the directed fixed energy sand(@EES
absorbed phase to an active phase. models on an oriented square lattice placed orxtheplane,
After the dynamics starts, the system takes some time tperiodic boundary conditions are imposed along both the di-
relax to the steady state. The activity at a certain time igections. A preferred direction is imposed onto this system
measured by the fractiomof lattice sites which are unstable along the - direction. The critical height of stability of a
at that time. In general the mean activ{y) is a function of  sand column is fixed &t,=1, and on a toppling two grains of
the densityZ, i.e., the deviation from the critical poild=¢  sand are distributed to the two neighboring sites along the
—{. and also the system size The simultaneous depen- preferred direction i.e., at the lower-I€ftL ) and lower-right
dence of activity oA andL is expressed by the following (LR) positions.
scaling form: Two different versions of the model are studied according
to the rule by which the two grains are distributed in a top-
(p(A,L))y = LALg(LY"2A), (1)  pling: (i) both the LL and LR sites get one grain each, which
we call as the deterministic directed fixed energy sandpile
where G(x) is an universal scaling function such th@x)  model (DDFES), (i) each of the two grains is distributed
—xP whenx> 1. This implies that for a certain range &fif ~ randomly to any of the LL or LR positions, and this version
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activity to 3/(2L). Thus in general the variation of activity is
FIG. 1. Filled circles denote the sites on the toppling front in andiscrete and has a steplike variation with step heigh¢gL1)/

infinite avalanche of DDFES on an oriented square lattice of sizqug_ 2). As the system size increases the step height de-
L=32. This avalanche is periodic and has a period 64. Horizontafregses to zero and the variationgofvith £ becomes more
empty circles denote positions of the TF in another 63 time unitSgnd more smooth. Similar steplike behavior of the order pa-
The two end sites of the TF fluctuates but maintains a mean dis;ameter was also observed [20].
tance ofL./2. The configurations at the steady state are periodic and the

is called the stochastic directed fixed energy sandpil§@me detailed distribution of grain numbers at all sites repeat
(SDFES model. at regular intervals of time. The periodic time is always mul-
We shall first discuss the properties of DDFES. The criti-tiples of L in a L XL system. For small systems this period
cal point can be arrived at from an inactive state by addind"las different values for different initial configurations but in
grains one by one on an initial empty lattice followed by themost (about 95% cases the period isL2and rarelyL, 3L,
relaxation of the avalanche. On the average both the size arfll, etc. However, for bigger system sizes e.g.,lfor 512,
the life times of the avalanches increase as the density grow$024 or more the period is alway& 2This helps to calculate
The toppling front(TF) of an avalanche is a set of horizontal the order parameter. Given an initial distribution of grains, it
contiguous sites which travels downward with unit speedtherefore needs to find out the mean activity over only a
The length of the TF however fluctuat€gig. 1). If at an  period and then average over many initial configurations.
intermediate time the TF has sites, then at the next time The critical densityl. actually has a system size depen-
step its length can be only-1,n or n+1. For a finite ava- dence. To study this variation we start with a closed empty
lanche the TF first grows from a single site to a certain lengtHattice of sizeL X L and go on adding sand grains one by one
and then shrinks to zero. The set of sites covered by the lefit randomly selected lattice sites similar to what is done in an
and right end sites of TF are the paths of two annihilatingopen sandpile. The dynamics of the avalanche is followed for
random walkerg15]. For a finite avalanche they meet and each sand grain added. The mean avalanche size increases
annihilate, however for an infinite avalanche these two ranwith the density of grains in the system and at a certain
dom walkers cannot meet and the best possible way it can bel.(L) depending on the sequence of randomly selected sites
ensured if they can maintain a distanceLé® on the average at which the grains were dropped, the activity does not stop
from each other. any more and an “infinite” avalanche continues for ever. In
Therefore the minimum possible sustained activity forpractice, in our simulation we followed an avalanche up to a
DDFES in a system of size is p=1/(2L). What is interest-  certain relaxation tim@=1 for L <128 andT=5x 10° for
ing is, on such a system if the density is slightly increased-=128 to declare the avalanche as infinite. Repeating this
the avalanches created by the additional grains die away argimulation a large number of times, every time starting from
the system maintains the activity of the infinite avalanche. Iran empty system, we calculate the average critical density
a sense the system gets locked with this activity for a certaitc(L)). These values are then extrapolated @s(L))={.
range of grain density. However on increasing the density- AL™*"I as shown in Fig. 3 to obtaif}=0.4115+0.002 and
even further, a second infinite avalanche is created and both/»,=0.361 giving yj=2.77. We also esimated. by the
the TFs run simultaneously resulting a sudden jump in thescaling plot of mean avalanche sizs(L))L™%% vs AL%03

O,
OOOO
(OX®)

(ON®)
(OX®)
OOOO

(ON®)

(ON®)

()
OOOO.

(ON®)
(ONON )

@) O.

(ON®)

OgO.

OOO

OOO

OOO

OOO

OOO

OOO

@)
@)
@)
O

@)
@)
@)
@)
@)
@)
@)
@)
@)
(@)

@)
@)
@)
@)
@)
@)

@)
@)

O
@)
@)
@)
@)
@)
@)
@)
@)
(@)
@)
@)
@)
@)

@)

O

@)
@)
@)
@)
@)
@)
@)
@)
(@)

OO
@)
@)
@)
@)
@)
@)
@)
@)
@)
OO
@)
@)
800 (OXO®)
(OXO®)
OO
@)
@)

@)
@)
(OXO®)
O

@)
OO

067107-2



BRIEF REPORTS

0.06

0.04 - —

<C)>-€,

0.02 —

0.00 ‘ : ‘ :
0.00 0.10 0.20

0.30
-0.361

L

FIG. 3. The variation of the deviation of the critical density
(L) of a system of sizé. from its value{; at the infinitely large
system is plotted with."Y". For DDFES we obtair,~0.4115,
1=1/0.361=2.77.

which is also consistent with our estimate f0.4115.

A system of sizelL is filled initially with density ¢ by
randomly distributingZL? grains. We allow the system to
evolve up to a relaxation tim& after which the activity is

PHYSICAL REVIEW B9, 067107(2004)

L

FIG. 5. The average of maximal lifetin{g,(L)) of the avalanche
prior to the infinite avalanche is plotted with The slope gives a
measure of the dynamical exponentl.49.

a nice data collapse for system sides128,256, and 512.
Comparing with Eq.(1) we concludeB/v, =1 and 1k,
=0.55. This implies thag=v, =~1.82.

The analysis so far enables us to estimate the dynamical
exponentz=y,/v, = 1.52. This value of the dynamical expo-

measured at every time step. To measure the mean activityent is directly verified by measuring the survival probabil-

(p(A,L)) for a slightly higher density + &, we take the ad-

ity. The survival probabilityP(t) that the initial activity in a

vantage of the fact that the system dynamics is deterministiczandom distribution of grains survives a tirh@as an expo-
On the same initial distribution of grains corresponding tonential distribution asP(t) ~exp(—t/ 7). At the critical point

the density another(87)L? grains are randomly added. This

{. the characteristic time is a function of only the system size

ensures that if certain density gives sustained activity, itas: (L) ~L* where,z is the dynamical exponeatv,/v, of
higher density necessarily gives a nonstop activity. Theséhe system. Therefore we calculate the average survival time

measurements are then repeated for different system sizes.

(L)) which is also proportional td.* at /. for different

Fig. 4 we show the scaling of the order parameter on doublegystem sizes. This is done again by dropping grains of sand

logarithmic scale. Plottingo(A, L))L with L°5%A we observe
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FIG. 4. Scaling of the order parametgfA,L)) with the devia-
tion A=¢-¢. from the critical point. From this data collapse and
Eqg. (1) we find, B/v, =1 and 1k, =0.55.

one by one into a closed system and calculating the lifetime
of the largest avalanche before the system gets locked into an
infinite avalanche. Averaging over many initial configura-
tions the largest lifetimét,(L)) is plotted in Fig. 5 for on a
double logarithmic scale. The slope of the straight line gives
the value for the dynamical exponemt=1.49+0.05 for
DDFES compared to 1.52 obtained previously.

In the stochastic directed fixed energy sandpile model the
critical density{; is found to be very close to 0.5. The order
parameter has a highly linear variation with as: p(A)
=AA whereA=0.46. A similar to DDFES calculation of the
system size dependent critical density after extrapolation
(L(L)y=L+A'LY™" gives yy=1 and A’ =~2.4. The plot of
{p(A,L)) vs A is a very nice straight line and the plot of data
for different system sizes fall on top of one another. We
conclude tha3=1 andv, =~o.

The roughening of the associated interface in our FES
models is studied. IH;(L,t) denotes the number of topplings
upto the timet, then the set oH;(L,t)s for all i represent an
interface. For DDFES the width of this interface fluctuates
periodically but its average grows aéf(L,t)~L*G(t/L)),

067107-3
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FIG. 6. Two snapshots of height configurations in the directedSyStem(Fig' 6)_' ) ) )
fixed energy sandpile model on a 8B4 oriented square lattice, To summarize, we have studied the directed version of the

downward direction being the preferred direction. Stochastic DFESXed energy sandpile on the oriented square lattices. Like
is shown on the left where as the deterministic DFES is shown oniSotropic FES, our directed FES also shows a continuous
the right. Active sites are shown by filled circles, open circles de-phase transition from an absorbed phase to an active phase.

note sites with height 1 and vacant sites are not indicated. Two versions of the model are studied. In the deterministic
] ) _ FES, the grain number configurations are periodic and re-

where we find fora=0.31 andz=1.6 in comparison to the  peats at regular time interval of 2For this model the criti-

Linear Interface Model resulis=0.75 andz=1.56[22]. cal points as well as the critical exponents are found to be
Finally we study the DFES models on oriented squaréyontrivial and belong to a new universality class. The other

lattices of rectangular shapes, the longer sides being paralighrsion has the stochastic toppling dynamical rules and ex-

to the preferred direction. For DDFES model the TFs areyonents of mean-field nature are found for this ma@able

contiguous sites covering the transverse direction in the forny

of rings. These toppling rings are perfectly stable, once

formed they never change in shape. As density increases, the We thank F. O. Ogundare for some initial discussions.
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