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We numerically study the directed version of the fixed energy sandpile. On a closed square lattice, the
dynamical evolution of a fixed density of sand grains is studied. The activity of the system shows a continuous
phase transition around a critical density. While the deterministic version has the set of nontrivial exponents,
the stochastic model is characterized by mean field like exponents.
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Spontaneous emergence of long ranged spatio-temporal
correlations under a self-organizing dynamics, in absence of
a fine tuning parameter is the basic idea of self-organized
criticality (SOC). Sandpile models are the prototype models
of SOC [1–9]. In sandpile models an integer height variable
hi representing the number of grains in the sand column is
associated with every site of a regular lattice. The system is
driven by adding unit grains of sand at a time. When the
height hi .hc the sand column topples and it loses some
grains which are distributed among the neighboring sites[1].
This creates an avalanche of sand column topplings and the
extent of such activity measures the size of the avalanche.
Sand grains go out of the system through a boundary so that
in the steady state the fluxes of inflow and outflow currents
balance.

On the other hand a fixed energy sandpile(FES) [10–13]
is a sandpile model within a closed system. Therefore the
total mass of sand in this system is a conserved quantity. The
control parameter is the densityz of grains. A stable state has
heights varying from 0 tohc−1 and is called aninactive
state, whereas, any height configuration that has at least one
unstable site is said to be in theactivestate. The dynamics of
the system starts with a random distribution ofN=zL2

grains. Initially some sites may be unstable, which topple.
Consequently some of the neighboring sites may topple
again and the activity continues. For an infinitely large sys-
tem there exists a critical thresholdzc such that ifz,zc the
activity terminates and the system gets absorbed in an inac-
tive state where as forz.zc the activity of the system fluc-
tuates but maintains a steady mean value[10]. Thereforezc
is the critical point of a continuous phase transition from an
absorbed phase to an active phase.

After the dynamics starts, the system takes some time to
relax to the steady state. The activity at a certain time is
measured by the fractionr of lattice sites which are unstable
at that time. In general the mean activitykrl is a function of
the densityz, i.e., the deviation from the critical pointD=z
−zc and also the system sizeL. The simultaneous depen-
dence of activity onD and L is expressed by the following
scaling form:

krsD,Ldl = L−b/n'GsL1/n'Dd, s1d

whereGsxd is an universal scaling function such thatGsxd
→xb whenx@1. This implies that for a certain range ofD if

L is so large thatL1/n'D@1 thenkrsD ,Ldl is independent of
L and depends solely onD as krsD ,Ldl,Db. Naturallyb is
the order parameter exponent for the transition. On the other
hand whenx!1, Gsxd→ constant, independent of bothD
and L implies that right at the critical pointz=zc the order
parameter varies with the system size as:krsLdl,L−b/n',
independent ofD.

To which universality class the FES model exponents
should correspond to? Intensive research has been done to
study the universality class of the phase transitions in FES
models. It has been suggested that FES belongs to the uni-
versality class of the linear interface models(LIM ) but not of
that of the Directed percolation(DP) universality class
[10–13]. DP is generic for continuous absorbing state transi-
tions in the absence of a conservation law where as in FES
there exists a conserved field which is the density and it
couples the order parameter, i.e., the mean activity. We, in
the present study like to examine if an explicit application of
the directional bias to the FES system makes the system
behave as DP or it results to another new universality class.

Application of a global directional bias onto a system has
been proved to have strong effect on the critical behaviors of
various models in statistical physics. In directed systems,
degrees of freedom of the individual elements is reduced,
which shrinks the configuration space of the system com-
pared to undirected system. As a result a directed system is
simpler and easily tractable analytically. Examples include
directed percolation[14], directed sandpile model[15–17],
directed river networks[18], and directed self-avoiding
walks [19], etc.

We study here the directed fixed energy sandpile(DFES)
models on an oriented square lattice placed on thex–y plane,
periodic boundary conditions are imposed along both the di-
rections. A preferred direction is imposed onto this system
along the −y direction. The critical height of stability of a
sand column is fixed athc=1, and on a toppling two grains of
sand are distributed to the two neighboring sites along the
preferred direction i.e., at the lower-left(LL ) and lower-right
(LR) positions.

Two different versions of the model are studied according
to the rule by which the two grains are distributed in a top-
pling: (i) both the LL and LR sites get one grain each, which
we call as the deterministic directed fixed energy sandpile
model (DDFES), (ii ) each of the two grains is distributed
randomly to any of the LL or LR positions, and this version
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is called the stochastic directed fixed energy sandpile
(SDFES) model.

We shall first discuss the properties of DDFES. The criti-
cal point can be arrived at from an inactive state by adding
grains one by one on an initial empty lattice followed by the
relaxation of the avalanche. On the average both the size and
the life times of the avalanches increase as the density grows.
The toppling front(TF) of an avalanche is a set of horizontal
contiguous sites which travels downward with unit speed.
The length of the TF however fluctuates(Fig. 1). If at an
intermediate time the TF hasn sites, then at the next time
step its length can be onlyn−1,n or n+1. For a finite ava-
lanche the TF first grows from a single site to a certain length
and then shrinks to zero. The set of sites covered by the left
and right end sites of TF are the paths of two annihilating
random walkers[15]. For a finite avalanche they meet and
annihilate, however for an infinite avalanche these two ran-
dom walkers cannot meet and the best possible way it can be
ensured if they can maintain a distance ofL /2 on the average
from each other.

Therefore the minimum possible sustained activity for
DDFES in a system of sizeL is r=1/s2Ld. What is interest-
ing is, on such a system if the density is slightly increased
the avalanches created by the additional grains die away and
the system maintains the activity of the infinite avalanche. In
a sense the system gets locked with this activity for a certain
range of grain density. However on increasing the density
even further, a second infinite avalanche is created and both
the TFs run simultaneously resulting a sudden jump in the

activity by doubling its magnitude to 1/L. This continues for
some range of grain density which ends at another jump in
activity to 3/s2Ld. Thus in general the variation of activity is
discrete and has a steplike variation with step heights 1/s2Ld
(Fig. 2). As the system size increases the step height de-
creases to zero and the variation ofr with z becomes more
and more smooth. Similar steplike behavior of the order pa-
rameter was also observed in[20].

The configurations at the steady state are periodic and the
same detailed distribution of grain numbers at all sites repeat
at regular intervals of time. The periodic time is always mul-
tiples of L in a L3L system. For small systems this period
has different values for different initial configurations but in
most (about 95%) cases the period is 2L and rarelyL, 3L,
4L, etc. However, for bigger system sizes e.g., forL 5 512,
1024 or more the period is always 2L. This helps to calculate
the order parameter. Given an initial distribution of grains, it
therefore needs to find out the mean activity over only a
period and then average over many initial configurations.

The critical densityzc actually has a system size depen-
dence. To study this variation we start with a closed empty
lattice of sizeL3L and go on adding sand grains one by one
at randomly selected lattice sites similar to what is done in an
open sandpile. The dynamics of the avalanche is followed for
each sand grain added. The mean avalanche size increases
with the density of grains in the system and at a certainz
=zcsLd depending on the sequence of randomly selected sites
at which the grains were dropped, the activity does not stop
any more and an “infinite” avalanche continues for ever. In
practice, in our simulation we followed an avalanche up to a
certain relaxation timeT=106 for L,128 andT=53106 for
Lù128 to declare the avalanche as infinite. Repeating this
simulation a large number of times, every time starting from
an empty system, we calculate the average critical density
kzcsLdl. These values are then extrapolated as:kzcsLdl=zc

+AL−1/ni as shown in Fig. 3 to obtainzc=0.4115±0.002 and
1/ni=0.361 giving ni <2.77. We also esimatedzc by the
scaling plot of mean avalanche sizekssLdlL−0.05 vs DL0.03

FIG. 1. Filled circles denote the sites on the toppling front in an
infinite avalanche of DDFES on an oriented square lattice of size
L=32. This avalanche is periodic and has a period 64. Horizontal
empty circles denote positions of the TF in another 63 time units.
The two end sites of the TF fluctuates but maintains a mean dis-
tance ofL /2.

FIG. 2. The mean activitykrl in a system of sizeL=64 which
grows with the density in a steplike manner where the step heights
areDr=1/s2Ld.
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which is also consistent with our estimate ofzc=0.4115.
A system of sizeL is filled initially with density z by

randomly distributingzL2 grains. We allow the system to
evolve up to a relaxation timeT after which the activity is
measured at every time step. To measure the mean activity
krsD ,Ldl for a slightly higher densityz+dz we take the ad-
vantage of the fact that the system dynamics is deterministic.
On the same initial distribution of grains corresponding to
the densityz anothersdzdL2 grains are randomly added. This
ensures that if certain density gives sustained activity, its
higher density necessarily gives a nonstop activity. These
measurements are then repeated for different system sizes. In
Fig. 4 we show the scaling of the order parameter on double
logarithmic scale. PlottingkrsD ,LdlL with L0.55D we observe

a nice data collapse for system sizesL=128,256, and 512.
Comparing with Eq.(1) we concludeb /n'=1 and 1/n'

=0.55. This implies thatb=n'<1.82.
The analysis so far enables us to estimate the dynamical

exponentz=ni /n'<1.52. This value of the dynamical expo-
nent is directly verified by measuring the survival probabil-
ity. The survival probabilityPstd that the initial activity in a
random distribution of grains survives a timet has an expo-
nential distribution as:Pstd,exps−t /td. At the critical point
zc the characteristic time is a function of only the system size
as:tsLd,Lz where,z is the dynamical exponentz=ni /n' of
the system. Therefore we calculate the average survival time
ktcsLdl which is also proportional toLz at zc for different
system sizes. This is done again by dropping grains of sand
one by one into a closed system and calculating the lifetime
of the largest avalanche before the system gets locked into an
infinite avalanche. Averaging over many initial configura-
tions the largest lifetimektcsLdl is plotted in Fig. 5 for on a
double logarithmic scale. The slope of the straight line gives
the value for the dynamical exponentz=1.49±0.05 for
DDFES compared to 1.52 obtained previously.

In the stochastic directed fixed energy sandpile model the
critical densityzc is found to be very close to 0.5. The order
parameter has a highly linear variation withD as: rsDd
=AD whereA<0.46. A similar to DDFES calculation of the
system size dependent critical density after extrapolation
kzcsLdl=zc+A8L−1/ni gives ni <1 and A8<2.4. The plot of
krsD ,Ldl vs D is a very nice straight line and the plot of data
for different system sizes fall on top of one another. We
conclude thatb<1 andn'<`.

The roughening of the associated interface in our FES
models is studied. IfHisL ,td denotes the number of topplings
upto the timet, then the set ofHisL ,tds for all i represent an
interface. For DDFES the width of this interface fluctuates
periodically but its average grows as:WsL ,td,LaGst /Li

zd,

FIG. 3. The variation of the deviation of the critical density
zcsLd of a system of sizeL from its valuezc at the infinitely large
system is plotted withL−1/ni. For DDFES we obtainzc<0.4115,
ni=1/0.361<2.77.

FIG. 4. Scaling of the order parameterkrsD ,Ldl with the devia-
tion D=z−zc from the critical point. From this data collapse and
Eq. (1) we find, b /n'=1 and 1/n'=0.55.

FIG. 5. The average of maximal lifetimektcsLdl of the avalanche
prior to the infinite avalanche is plotted withL. The slope gives a
measure of the dynamical exponentz=1.49.
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where we find fora=0.31 andz=1.6 in comparison to the
Linear Interface Model resultsa=0.75 andz=1.56 [22].

Finally we study the DFES models on oriented square
lattices of rectangular shapes, the longer sides being parallel
to the preferred direction. For DDFES model the TFs are
contiguous sites covering the transverse direction in the form
of rings. These toppling rings are perfectly stable, once
formed they never change in shape. As density increases, the

number of such rings increases. On the other hand for SD-
FES, the toppling sites are randomly scattered throughout the
system(Fig. 6).

To summarize, we have studied the directed version of the
fixed energy sandpile on the oriented square lattices. Like
isotropic FES, our directed FES also shows a continuous
phase transition from an absorbed phase to an active phase.
Two versions of the model are studied. In the deterministic
FES, the grain number configurations are periodic and re-
peats at regular time interval of 2L. For this model the criti-
cal points as well as the critical exponents are found to be
nontrivial and belong to a new universality class. The other
version has the stochastic toppling dynamical rules and ex-
ponents of mean-field nature are found for this model(Table
I).
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TABLE I. Comparison of critical points and exponents for dif-
ferent models of fixed energy sandpiles. Exponent values for Bak-
Tang-Wiesenfeld(BTW) and Manna sandpiles are taken from[12],
DP exponents from[21].

Model zc b n' ni

DDFES 0.4115 1.82 1.82 2.77

SDFES 0.5 1.00 ` 1.00

BTW FES 2.125 0.7 0.90 1.49

Manna FES 0.716 95 0.64 0.82 1.29

DP 0.583 0.733 1.295

FIG. 6. Two snapshots of height configurations in the directed
fixed energy sandpile model on a 32364 oriented square lattice,
downward direction being the preferred direction. Stochastic DFES
is shown on the left where as the deterministic DFES is shown on
the right. Active sites are shown by filled circles, open circles de-
note sites with height 1 and vacant sites are not indicated.
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